

## QSAR studies on 4-thiazolidinones and 2-azetidinones bearing benzothiophene nucleus as potential anti-tubercular agents

A S Narute, P B Khedekar & K P Bhusari\*

Sharad Pawar College of Pharmacy, Wanadongri, Hingna Road, Nagpur 441 110, India

E-mail: kp\_bhusari@rediffmail.com

Received 31 March 2006; accepted (revised) 10 January 2008

Quantitative structure-activity relationships (QSAR) study on a series of (substituted 1, 2-dihydro)4-thiazolidinones and 2-azetidinones bearing benzothiophene nucleus with anti-tubercular activity has been carried out using a combination of various physicochemical descriptors. Several significant equations with good co-efficient of correlation ( $>0.860$ ) have been obtained. The two models are selected using internal predictive power discerned by cross-validated coefficient  $q^2$ . Both models highlight some common important feature, *i.e.*, bulky substitution and the high nucleophilicity nature of the molecules, favorable for anti-tubercular activity.

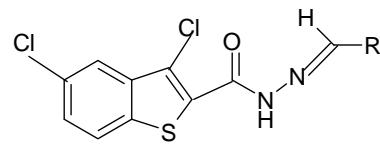
**Keywords:** Anti-tubercular activity, QSAR, benzothiophene, anti-tubercular agents

Tuberculosis is a chronic granulomatous disease<sup>1</sup>. It is estimated that today one-third to one-half of the world population is infected with tuberculosis leading to approximately 6% of all deaths worldwide<sup>2,3</sup>. The causative moiety of the disease is *Mycobacterium tuberculosis*<sup>4</sup>. Despite of the development of several types of synthetic anti-tubercular agents, the incidences of tuberculosis is still increasing in large parts of the world due to the development of resistance in *Mycobacterium* to the available drugs. Thus, there is an urgent need for novel anti-tubercular agents. With modes of action and chemical structures different from the currently used compounds, it is planned to study the quantitative structure activity relationships<sup>5,6</sup> (QSAR), of some 4-thiazolidinones<sup>7-9</sup> and 2-azetidinones<sup>10-12</sup>, which have played an important role in medicinal chemistry. Moreover, they have been studied extensively because of their ready accessibility, diverse chemical reactivity and broad spectrum of biological activity. The focus of the present investigations is the QSAR analysis of thiazolidinones and azetidinones nucleus as potent anti-tubercular agents.

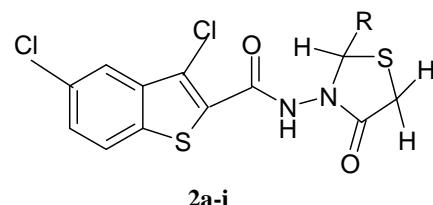
### Materials and Methods

#### The Dataset and Parameters

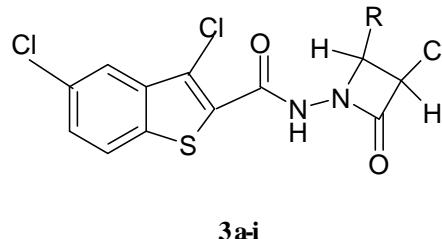
Quantitative structure activity relationship (QSAR) studies of anti-tubercular activity of newly reported


thiazolidinones and azetidinones derivatives against *Mycobacterium tuberculosis* reported by Joshi *et al*<sup>13</sup> were performed using linear free energy relation of Hansch. Some of the compounds reported in the original paper were excluded in the present study because of their non-graded quantitative activity data or non-availability of parametric values. Anti-tubercular activity of remaining compounds are given in **Table I**. The biological activity values [BA] reported in the literature were converted to molar units and then further to -log scale and subsequently used as the response variable for the QSAR analysis. The molar anti-tubercular activities were then subjected to multiple regression analysis on different physicochemical parameters and indicator variables (QSAR). The relationships between the activities were also studied to explore the selectivity in terms of structural requirements. The congeneric series possesses one region of structural variation. **Figure 1** shows effect of R substitution on 2-(substituted-benzal-hydrazinocarbonyl)-3,5-chlorobenzo(b)thiophene, **Figure 2** shows effect of R substitution on 2-aryl-5H-3-(3',5'-dichloro-2'-benzo(b)thiophenylamino)-4-thiazolidin- ones and **Figure 3** shows effect of R substitution on the 4-aryl-3-chloro-1-(3',5'-dichloro-2'-benzo(b)-thiophenylamino)-2- azetidinones.

All the computations in the present study were performed on PIV workstation. The molecular structures of the training set were sketched using


**Table I**—Anti-tubercular activity data for 4-thiazolidinones and 2-azetidinones benzothiophene derivatives used in this study

| Compd     | R                                                                       | BA | -logBA |
|-----------|-------------------------------------------------------------------------|----|--------|
| <b>1a</b> | 3-Br-C <sub>6</sub> H <sub>4</sub>                                      | 07 | 1.12   |
| <b>1b</b> | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                       | 14 | 0.78   |
| <b>1c</b> | 3-OCH <sub>3</sub> 4-OH- C <sub>6</sub> H <sub>3</sub>                  | 08 | 1.06   |
| <b>1d</b> | 4-N, N- (CH <sub>3</sub> ) <sub>2</sub> - C <sub>6</sub> H <sub>4</sub> | 12 | 0.86   |
| <b>1e</b> | 3-OC <sub>6</sub> H <sub>5</sub> - C <sub>6</sub> H <sub>4</sub>        | 06 | 1.19   |
| <b>1f</b> | 4-S- CH <sub>3</sub> - C <sub>6</sub> H <sub>4</sub>                    | 07 | 1.12   |
| <b>2a</b> | 3-Br-C <sub>6</sub> H <sub>4</sub>                                      | 20 | 0.6    |
| <b>2b</b> | 3-Cl- C <sub>6</sub> H <sub>4</sub>                                     | 15 | 0.75   |
| <b>2c</b> | 3,4-(O CH <sub>3</sub> ) <sub>2</sub> - C <sub>6</sub> H <sub>3</sub>   | 01 | 1.99   |
| <b>2d</b> | 4-OCH <sub>3</sub> - C <sub>6</sub> H <sub>4</sub>                      | 18 | 0.65   |
| <b>2e</b> | 3-OCH <sub>3</sub> 4-OH- C <sub>6</sub> H <sub>3</sub>                  | 10 | 0.95   |
| <b>2f</b> | 4-N, N- (CH <sub>3</sub> ) <sub>2</sub> - C <sub>6</sub> H <sub>4</sub> | 11 | 0.9    |
| <b>2g</b> | 3-OC <sub>6</sub> H <sub>5</sub> - C <sub>6</sub> H <sub>4</sub>        | 18 | 0.65   |
| <b>2h</b> | 4-S- CH <sub>3</sub> - C <sub>6</sub> H <sub>4</sub>                    | 06 | 1.19   |
| <b>2i</b> | 3,4,5-(O CH <sub>3</sub> ) <sub>3</sub> - C <sub>6</sub> H <sub>2</sub> | 20 | 0.6    |
| <b>3a</b> | 3-Br-C <sub>6</sub> H <sub>4</sub>                                      | 19 | 0.62   |
| <b>3b</b> | 3-Cl- C <sub>6</sub> H <sub>4</sub>                                     | 26 | 0.45   |
| <b>3c</b> | 3,4-(O CH <sub>3</sub> ) <sub>2</sub> - C <sub>6</sub> H <sub>3</sub>   | 28 | 0.41   |
| <b>3d</b> | 4-OCH <sub>3</sub> - C <sub>6</sub> H <sub>4</sub>                      | 02 | 1.69   |
| <b>3e</b> | 3-OCH <sub>3</sub> 4-OH- C <sub>6</sub> H <sub>3</sub>                  | 10 | 0.65   |
| <b>3f</b> | 4-N, N- (CH <sub>3</sub> ) <sub>2</sub> - C <sub>6</sub> H <sub>4</sub> | 15 | 0.75   |
| <b>3g</b> | 3-OC <sub>6</sub> H <sub>5</sub> - C <sub>6</sub> H <sub>4</sub>        | 20 | 0.6    |
| <b>3h</b> | 4-S- CH <sub>3</sub> - C <sub>6</sub> H <sub>4</sub>                    | 22 | 0.54   |
| <b>3i</b> | 3,4,5-(O CH <sub>3</sub> ) <sub>3</sub> - C <sub>6</sub> H <sub>2</sub> | 10 | 0.95   |


Chem Draw Ultra module of CS Chem Office 2001 molecular modeling software ver. 6.0, supplied by Cambridge Software Company<sup>14</sup>. The sketched structures were exported to Chem3D module in order to create its 3D model. Each model was “cleaned up” and energy minimization was performed using Allinger’s MM2 force field by fixing Root Mean Square Gradient (RMS) to 0.1 Kcal/mol Å. Further, geometry optimization was done using semiempirical AM1 (Austin Model) Hamiltonian method, closed shell restricted wave function available in the MOPAC module until the RMS value becomes smaller than 0.001 Kcal/mol Å. The low energy conformers obtained from the aforementioned procedure was used for the calculation of the descriptors. The descriptors include physicochemical, thermodynamic, electronic and spatial descriptors available in the ‘Analyze’ option of the Chem. 3D package (**Table II**). The descriptors calculated for the present study accounts for four important properties of the molecules: physicochemical, thermodynamic,



**Figure 1**—2-(Substituted-benzalhydrazinocarbonyl)-3,5-dichlorobenzo(b)thiophen



**Figure 2**—2-Aryl-5H-3-(3',5'-dichloro-2'-benzo(b)thiophenylamino)-4-thiazolidinones



**Figure 3**—4-Aryl-3-chloro-1-(3',5'-dichloro-2'-benzo(b)thiophenylamino)-2-azetidinones

electronic and steric, as they represent the possible molecular interactions between the receptor and thiadiazinoacridines.

### Multivariate Regression Analysis

The regression analyses were carried out using SYSTAT<sup>15</sup> version 10.2. The statistical quality of equation was judged by the parameters like correlation coefficient (R), standard deviation, standard error of estimation (SEE), variance ratio (f), at specified degree of freedom (df), and ‘t’ values of the regression constant (*i.e.*, the constant term of the regression equation: regression coefficients and intercepts). The use of more than one variable in multivariate equation was justified by autocorrelation study. All the accepted equations have regression constant and f-ratio significant at 95% and 99% level, respectively, if not stated otherwise.

### Predicted Residual Analysis

QSAR models can be cross-validated by predicted residual leave one out (LOO) analysis. Each compound of the list is deleted once from the data set

**Table II** — Descriptors calculated for the QSAR study

| Sr No | Descriptor                              | Type          |
|-------|-----------------------------------------|---------------|
| 1     | Heat of Formation (HF)                  | Thermodynamic |
| 2     | Boiling Point (BP)                      | Thermodynamic |
| 3     | Critical Pressure (CP)                  | Thermodynamic |
| 4     | Critical Temperature (CT)               | Thermodynamic |
| 5     | Critical Volume (CV)                    | Thermodynamic |
| 7     | Henry's Law Constant (HLC)              | Thermodynamic |
| 8     | Ideal Gas Thermal Capacity (IGTC)       | Thermodynamic |
| 9     | Log P                                   | Thermodynamic |
| 10    | Melting Point (MP)                      | Thermodynamic |
| 11    | Molar Refractivity (MR)                 | Thermodynamic |
| 12    | Standard Gibbs Free Energy (SGFE)       | Thermodynamic |
| 13    | Connolly Accessible Area (CAA)          | Steric        |
| 14    | Connolly Molecular Area (CMA)           | Steric        |
| 15    | Connolly Solvent-Excluded Volume (CSEV) | Steric        |
| 16    | Ovality (OVA)                           | Steric        |
| 17    | Principal Moment of Inertia – X (PMI-X) | Steric        |
| 18    | Principal Moment of Inertia – Y (PMI-Y) | Steric        |
| 19    | Principal Moment of Inertia – Z (PMI-Z) | Steric        |
| 20    | Dipole Moment (D)                       | Electronic    |
| 21    | Dipole Moment –X Axis (DX)              | Electronic    |
| 22    | Dipole Moment –Y Axis (DY)              | Electronic    |
| 23    | Dipole Moment –Y Axis (DZ)              | Electronic    |
| 24    | Electronic Energy (EE)                  | Electronic    |
| 25    | HOMO Energy (HOMO)                      | Electronic    |
| 26    | LUMO Energy (LUMO)                      | Electronic    |
| 27    | Repulsion Energy (RE)                   | Electronic    |
| 28    | Bend Energy (E <sub>b</sub> )           | Thermodynamic |
| 29    | Charge-Charge Energy (CCE)              | Thermodynamic |
| 30    | Charge-Dipole Energy (CDE)              | Thermodynamic |
| 31    | Dipole-Dipole Energy (DDE)              | Thermodynamic |
| 32    | Non-1, 4 VDW Energy (E <sub>v</sub> )   | Thermodynamic |
| 33    | Stretch Energy (SE)                     | Thermodynamic |
| 34    | Stretch-Bend Energy (SBE)               | Thermodynamic |
| 35    | Torsion Energy (E <sub>t</sub> )        | Thermodynamic |
| 36    | Total Energy (E)                        | Thermodynamic |
| 37    | Van der Waals e,1,4 Energy (VDWE)       | Thermodynamic |
| 38    | VDW 1,4 Energy (VDWE)                   | Thermodynamic |
| 39    | Partition coefficient                   | Thermodynamic |

and corresponding regression equation is found out to calculate predicted activity value and predicted residual (press) of deleted compound. The PRESS (predicted residual sum of squares) statistics provides the relations between the observed activity and calculated value (according to PRESS equation). The

**Table III** — Calculated descriptor values for the given series of compounds

| Compd     | PMI-X   | D      | HOMO    | E <sub>t</sub> |
|-----------|---------|--------|---------|----------------|
| <b>1a</b> | 2730.62 | 2.4079 | -8.7059 | -5.2672        |
| <b>1b</b> | 2160.68 | 3.5584 | -8.6642 | -5.3606        |
| <b>1c</b> | 2288.34 | 5.1355 | -8.7057 | -6.1963        |
| <b>1d</b> | 2343.45 | 6.0749 | -8.26   | -7.5633        |
| <b>1e</b> | 3051.31 | 3.2713 | -8.7667 | -11.004        |
| <b>1f</b> | 2252.2  | 3.7861 | -8.2024 | -7.967         |
| <b>2a</b> | 2699.54 | 3.7577 | -8.8652 | 1.76074        |
| <b>2b</b> | 2527.28 | 3.414  | -8.6927 | 2.42927        |
| <b>2c</b> | 3154.93 | 3.8617 | -8.7583 | 4.29722        |
| <b>2d</b> | 2425.3  | 4.4814 | -8.8369 | 1.78119        |
| <b>2e</b> | 2947.99 | 3.5869 | -8.6887 | 0.47622        |
| <b>2f</b> | 2754.77 | 4.5916 | -8.3607 | 2.07256        |
| <b>2g</b> | 2353.77 | 3.0341 | -8.7454 | -2.6077        |
| <b>2h</b> | 2945.17 | 2.6997 | -8.1723 | -1.7454        |
| <b>2i</b> | 3297.32 | 4.3984 | -8.8235 | 3.87878        |
| <b>3a</b> | 2998.69 | 4.1765 | -8.8799 | 5.07532        |
| <b>3b</b> | 1826.95 | 4.1287 | -8.9326 | 5.83832        |
| <b>3c</b> | 3052.83 | 4.3274 | -8.8261 | 4.15428        |
| <b>3d</b> | 2659.45 | 4.5517 | -8.8324 | 5.93828        |
| <b>3e</b> | 2281    | 4.6457 | -8.667  | 3.66351        |
| <b>3f</b> | 3068.56 | 7.1458 | -8.4923 | 2.65777        |
| <b>3g</b> | 3224.63 | 5.5351 | -8.9489 | -1.2288        |
| <b>3h</b> | 2523.64 | 6.2512 | -8.6158 | 3.63627        |
| <b>3i</b> | 3644.38 | 4.2893 | -8.7998 | 6.50846        |

stability and predictive capacity of the equation were cross validated from PRESS statistics obtained by running VALSTAT<sup>16</sup> programs using “leave-one-out” technique.

## Results and Discussion

Biological activity data and various physico-chemical parameters were taken as dependent and independent variables, respectively, and correlations were established using sequential multiple regression analysis. The descriptors selected for modeling anti-tubercular activity of thiazolidinones and azetidinones derivatives are summarized in **Table III**.

The quarter parametric models were obtained and these models are significant for anti-tubercular activity.

### Model I

$$-\log BA = 4.48858(\pm 2.70123) + 0.00018139(\pm 0.000147211) PMI-X - 0.0606539(\pm 0.0559619) D +$$

0.453772( $\pm 0.305151$ )HOMO-0.0246623( $\pm 0.014462$ )  
 $E_t$

n = 22, R=0.860104, Variance=0.0183792, SD =0.13557, F=12.0823

### Model II

$-\log BA = 4.45369(\pm 2.67143) + 0.000217417(\pm 0.000135005)$  PMX- 0.0646233( $\pm 0.0528988$ ) D + 0.458231( $\pm 0.301616$ )HOMO- 0.0232831( $\pm 0.014025$ )  
 $E_t$

n=24, R =0.854129, variance=0.0183422, SD =0.135433, F=12.8125

The study of model I and model II revels those thermodynamic parameters like torsion energy ( $E_t$ ), steric parameters like principal moment of inertia X-axis (PMI-X) and electronic parameters like dipole moment (D) and highest occupied molecular orbit (HOMO) are associated with anti-tumor activity.

In model I, dipole moment, an electronic parameter and is important in case when dipole-dipole interactions are involved in ligand-receptor interactions and torsion energy ( $E_t$ ) is the thermodynamic parameter, which represents the energy associated with deforming torsion angles in the molecules from their ideal values. The negative coefficients of descriptors suggest presence of conjugation and bulky substituents tolerable for activity, whereas principal moment of inertia, X-axis is a spatial descriptor, which explains the significance of orientation and conformation rigidity of the molecule. The positive coefficient of these descriptor suggest the presence of bulky substituents oriented towards X-axis of the molecules will give better activity and highest occupied molecular orbital. HOMO is an electronic parameter and is the highest energy level in the molecule that contains electrons. It is crucially important in governing the molecular reactivity and properties. When a molecule acts as an electron pair donor in bond formation, the electrons are supplied form the molecule's HOMO. HOMO descriptor denotes nucleophilicity of the molecule and this term was correlated positively. The model suggests that PMI-X and HOMO is of significance having high value of t-test indicating statistical significance of calculated regression coefficient. To confirm this result the value of  $-\log BA$  was estimated using LOO and correlated with observed value of  $-\log BA$ . The value of bootstrapping  $r^2$ , chance and  $q^2$  in randomized biological activity indicates statistical significance of model as follows.

Bootstrapping  $r^2 = 0.813112$ ,  $q^2 = 0.571626$ , Spress = 0.173942,  $S_{DEP} = 0.152903$

In model II principal moment of inertia and highest occupied molecular orbital positively contribute to biological activity whereas dipole moment and torsion energy negatively contribute to biological activity. The model suggests that principal moment of inertia and highest occupied molecular orbital is of significance having high value if t-test indicating statistically significant calculated regression coefficient. Leave one out cross validation method was used for predictivity of model II. The value of bootstrapping  $r^2$ , chance and  $q^2$  in randomized biological activity indicates the statistical significance of the model as follows.

Bootstrapping  $r^2 = 0.777145$ ,  $q^2 = 0.586244$ , Spress = 0.167511,  $S_{DEP} = 0.149044$

The correlation matrix shows model II to be more significant than model I. In model I, all independent parameters (PMI-X, D,  $E_t$  and HOMO) have poor (independent) correlation with each other as expected in QSAR analyses but in model-II independent parameters (PMI-X, D,  $E_t$  and HOMO) have dependent correlation.

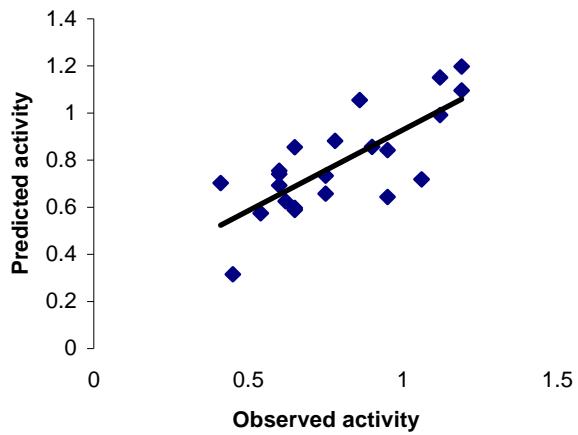
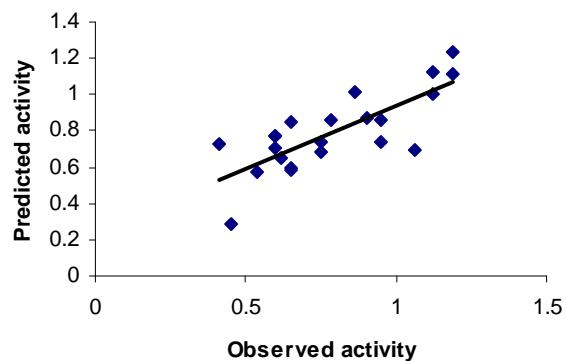
The correlation matrix and predicted activity data for model I and model II are shown in **Table IV**, **V** and **Table VI**, **VII**, respectively. **Figure 4** and **Figure 5** show a plot of observed vs predicted activities of compounds of model I and model II, respectively. The comparison of model I and model II, the model II was more significant than model I, having good correlation coefficient (R), cross-validated ( $q^2$ ) value (reflects predictive power of model) bootstrapping ( $r^2$ ) value (reflect accuracy of the model), and independent correlation between

**Table IV** — Correlation matrix for parameters in model I

| Parameters | PMI-X    | D        | HOMO     | $E_t$    |
|------------|----------|----------|----------|----------|
| PMI-X      | 1.000000 |          |          |          |
| D          | 0.055336 | 1.000000 |          |          |
| HOMO       | 0.170548 | 0.077995 | 1.000000 |          |
| $E_t$      | 0.256476 | 0.222781 | 0.402842 | 1.000000 |

**Table V** — Correlation matrix for parameters in Model II

| Parameters | PMI-X    | D        | HOMO     | $E_t$    |
|------------|----------|----------|----------|----------|
| PMI-X      | 1.000000 |          |          |          |
| D          | 0.014297 | 1.000000 |          |          |
| HOMO       | 0.208958 | 0.090494 | 1.000000 |          |
| $E_t$      | 0.319568 | 0.247327 | 0.405912 | 1.000000 |



**Table VI** — Predicted activity data of model I

| Compd     | Observed-<br>log BA | Predicted<br>-logBA | Calculated<br>-logBA |
|-----------|---------------------|---------------------|----------------------|
| <b>1a</b> | 1.12                | 0.991225            | 1.01723              |
| <b>1b</b> | 0.78                | 0.881516            | 0.865298             |
| <b>1c</b> | 1.06                | 0.717722            | 0.794575             |
| <b>1d</b> | 0.86                | 1.05483             | 0.983557             |
| <b>1e</b> | 1.19                | 1.09521             | 1.13694              |
| <b>1f</b> | 1.12                | 1.15091             | 1.14194              |
| <b>2a</b> | 0.6                 | 0.692616            | 0.684136             |
| <b>2b</b> | 0.75                | 0.733646            | 0.735515             |
| <b>2d</b> | 0.65                | 0.597315            | 0.602833             |
| <b>2e</b> | 0.95                | 0.842528            | 0.851327             |
| <b>2f</b> | 0.9                 | 0.856629            | 0.864789             |
| <b>2g</b> | 0.65                | 0.855464            | 0.827379             |
| <b>2h</b> | 1.19                | 1.19709             | 1.19375              |
| <b>2i</b> | 0.6                 | 0.74133             | 0.720402             |
| <b>3a</b> | 0.62                | 0.625229            | 0.624585             |
| <b>3b</b> | 0.45                | 0.31487             | 0.372207             |
| <b>3d</b> | 0.41                | 0.702978            | 0.67239              |
| <b>3e</b> | 0.65                | 0.588495            | 0.597353             |
| <b>3f</b> | 0.75                | 0.658391            | 0.692664             |
| <b>3g</b> | 0.6                 | 0.754452            | 0.707332             |
| <b>3h</b> | 0.54                | 0.575164            | 0.567922             |
| <b>3i</b> | 0.95                | 0.643861            | 0.735868             |

Compd **2c** and **3c** are outlier

**Table VII** — Predicted activity data of Model II

| Compd     | Observed<br>-log BA | Predicted -logBA | Calculated<br>-logBA |
|-----------|---------------------|------------------|----------------------|
| <b>1a</b> | 1.12                | 1.00262          | 1.02507              |
| <b>1b</b> | 0.78                | 0.860242         | 0.848092             |
| <b>1c</b> | 1.06                | 0.698692         | 0.77437              |
| <b>1d</b> | 0.86                | 1.01338          | 0.961711             |
| <b>1e</b> | 1.19                | 1.11086          | 1.14472              |
| <b>1f</b> | 1.12                | 1.12779          | 1.1255s9             |
| <b>2a</b> | 0.6                 | 0.703618         | 0.694477             |
| <b>2b</b> | 0.75                | 0.741783         | 0.742706             |
| <b>2c</b> | 1.99                | 0.595105         | 0.870313             |
| <b>2d</b> | 0.65                | 0.864143         | 0.876491             |
| <b>2e</b> | 0.95                | 0.871481         | 0.822645             |
| <b>2f</b> | 0.9                 | 0.84961          | 1.2154               |
| <b>2g</b> | 0.65                | 1.23674          | 0.752844             |
| <b>2h</b> | 1.19                | 0.772968         | 0.648548             |
| <b>2i</b> | 0.6                 | 0.651867         | 0.354963             |
| <b>3a</b> | 0.62                | 0.289744         | 0.696674             |
| <b>3b</b> | 0.45                | 0.723234         | 0.5926               |
| <b>3c</b> | 0.41                | 0.583873         | 0.705752             |
| <b>3d</b> | 1.69                | 0.684702         | 0.72504              |
| <b>3e</b> | 0.65                | 0.776434         | 0.565729             |
| <b>3f</b> | 0.75                | 0.57102          | 0.78498              |
| <b>3g</b> | 0.6                 | 0.735432         | 0.565729             |
| <b>3h</b> | 0.54                | 0.57102          | 0.78498              |
| <b>3i</b> | 0.95                | 0.735432         | 0.870313             |

**Figure 4** — Graph between observed activity and predicted activity of model I**Figure 5** — Graph between observed activity and predicted activity of model II

parameters as expected in QSAR analyses. These results show that such models can be helpful for theoretical prediction of anti-tubercular activity of new molecules.

### Conclusion

QSAR analysis was performed on a series of anti-tubercular activity of thiazolidinones and azetidinones derivatives using molecular modeling program Chemoffice 2001. QSAR models were proposed for anti-tubercular activity of the thiazolidinones and azetidinones using descriptors employing sequential multiple regression analysis method. The predictive power of each model was estimated with bootstrapping  $r^2$  method and leave one out cross validation method. It was observed from the selected models that biological activity of thiazolidinones and azetidinones derivatives is governed by thermodynamic and steric properties of the molecules. The models also provide valuable

insight into the mechanism of action of these compounds. The result of the study suggests involvement of partition coefficient in the mechanism of anti-tubercular action of thiazolidinones and azetidinones. The study will be helpful in the design of better anti-tubercular analogs of thiazolidinones and azetidinones derivatives for anti-tubercular activity.

### Acknowledgements

One of the authors, Ashok Narute, is grateful to the All India Council for Technical Education (AICTE) for providing fellowship. The authors wish to especially thank Dr. P. Trivedi and Director, Department of Pharmacy, Shri G.S. Institute of Technology and Sciences for providing software for study and Principal, Sharad Pawar College of Pharmacy, Nagpur for providing the necessary facilities for undertaking this research work.

### References

- 1 Tripathi K D, *Essentials of Medical Pharmacology*, 5th Edn (Jaypee Brothers Medical Publishers Pvt Ltd, New Delhi), **2003**, 689.
- 2 Marwick C, *JAMA*, **267**, **1992**, 174.
- 3 Daniel Y M, *Tuberculosis* in *Harrison's Principles of Internal Medicine*, 12th Edn, edited by Jean Wilson D (McGraw-Hill, New York), **1991**.
- 4 Williams D A & Lemke T L, *Foye's Principle of Medicinal Chemistry*, 5th Edn (Lippincott Williams and Wilkins, New York), **2002**, 905.
- 5 Hansch C, *Comprehensive Medicinal Chemistry* (Paragon Press, New York), **4**, **1990**, 579.
- 6 Smith H J & Williams H, *Introduction to Principle of Drug Design* (John Wright and Sons Ltd, Bristol), **1983**, 216.
- 7 Sharma R C & Kumar D, *J Inst Chem Soc*, **77**, **2000**, 492.
- 8 Joshi H, Upadhyay P S & Baxi A J, *Indian J Chem*, **39B**, **2000**, 967.
- 9 Ingle S, Sawale A R, Ingle R D & Mane R A, *Indian J Chem*, **40B**, **2001**, 124.
- 10 Kagathara P, Upadhyay T, Doshi R & Parekh H H, *Indian J Het Chem*, **10**, **2000**, 9.
- 11 Matsui N, *Jpn Kokai Tokyo JP*, **07**, **2000**, 652; *Chem Abstr*, **132**, **2000**, 64109u.
- 12 Desai K R, *Asian J Chem*, **132**, **2000**, 279145.
- 13 Joshi H S, Thaker K M & Kachhadia V V, *Indian J Chem*, **42B**, **2003**, 1544.
- 14 CS Chem Office, version 6.0, Cambridge Soft Corporation, software publisher Association, 1730 M Street, NW, Suite 700, Washington DC, 20036 (202), 452-1600, USA.
- 15 SYSTAT 10.2 version supplied by Systat Software Inc.
- 16 Gupta A K, Babu M A & Kaskhedikar S G, VALSTAT: Validation Program for Quantitative Structure Activity Relationship Studies, *Indian J Pharm Sci*, **66**, **2004**, 396.